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ABSTRACT

Current state-of-the-art techniques for modeling elec-
troencephalographs (EEG) data are based in a modified
K-means clustering [1]. Such techniques lack a statistical
framework that allows to find the optimal number of clusters
to express the distribution. The aim of this project is to model
EEG using mixture of Watson distributions (moW). To com-
pute the parameters of the mixture we use the Expectation-
Maximization algorithm (EM) with different assumption on
the data samples. First we assume that the data points are
independent, resulting in regular moW and later we assume a
Markov Chain dependency between the samples, resulting in
a Hidden Markov Model. In EEG data, the key information
is believed to be scale and polarity invariant so an axially
symmetric directional distribution, such as Watson, is a good
candidate for the data modeling.

Index Terms— electroencephalography clustering, mix-
ture models, Watson distribution, Expectation-Maximization
algorithm, Hidden Markov Models

1. INTRODUCTION

Event related brain activity can be modeled by micro-states
obtained from the spatial distributions of electric potential
measured by EEG. The event-related potential (ERP) micro-
states, typically lasting 80-120 ms[2], oscillates in polarity
and is independent of the intensity of the signal[3]. Most stud-
ies reveal the same 4 classes of micro-state topography[4, 5].

These four micro-states are believed to describe up to 80%
of the variance and the mixture of duration and sequences give
a rich temporal map[6]. Still, many studies come to this con-
clusion, there are exceptions to the rule, where, depending on
the application, five[7, 8] or even seven[9] micro-states con-
verge as optimal.

Although EEG data is a time-series, current clustering
methods do not attribute a dependency between the former
and prior state when classifying the micro-states. Two differ-
ent models are used in the scope of this project: EM with an
independence assumption between the samples and EM with
a Markov Chain of order 1 assumption between the samples
(Hidden Markov Model).

The EEG data used to evaluate the algorithms comes from
multi-subject, multi-modal human neuro-imaging recordings.

The volunteers performed a simple perceptual task on pic-
tures of famous and scrambled faces during two visits to the
laboratory[10].

2. STATE OF THE ART

Current state-of-the-art methods use K-means clustering as
it can efficiently classify a large number of continuous nu-
merical data of high-dimensions. A modified version of K-
means[1] is used in an EEGlab toolbox[11].

The modified K-means generates directional clusters but
it lacks a statistical framework. It can be considered a special
case of the moW if we impose a hard decision on the clusters
and concentration parameter. It does not guarantee to find
the minimum and may need to initialize multiple times with
randomly selected V; vectors from the dataset[1].

The toolbox also includes a method to automate optimal
micro-state segmentation, which is based on minimizing the
modified predictive residual variance. The method was first
published in the Journal of Neuroscience Methods[12], where
the authors described setting a maximum of 14 micro-states
and the segmentation was repeated 10 times to find the one
with lowest residual variance. Although the results of this
study yielded four micro-states as optimal it is clear that re-
searchers wish to refrain from limiting the number of clusters
with a convention[1].

Another recent approach is to instead of calculating the
micro-state oy as a binary output, to calculate the probabil-
ity p(ay:) instead[13].The method outperfomed EEGlab K-
means clustering at higher numbers of clusters (i.e K=7) and
was competitive in lower number of clusters (i.e K=4).

3. THE MULTIVARIATE WATSON DISTRIBUTION

The Watson distribution models data which is axially sym-
metric (£z vectors are equivalent) and scale invariant i.e. the
vectors are unitary. This are two interesting properties for
micro-state modeling since we are not interested in the mag-
nitude of the measurements nor in their polarity.

Let SP~! = {z|xr € RP|jz|]ls = 1} be the (p-1)-
dimensional hypersphere centered in the origin. Then the
Watson probability density function is



w(pTz)?

Wy (z|p, k) = cp(k)e ) zes! (H

where k € R, is the concentration parameter and p €
SP~1 is the mean direction. The normalisation constant ¢, (k)
is given by
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where M is Kummers confluent hypergeometric function
defined as
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Fig. 1. concentration values: (a) positive and (b) negative

The Figure 1 shows a scatter plot from Watson distribu-
tion samples. Note that for k — oo the samples concentrate
around the mean direction while for kK — —oo the samples
concentrate around a ring orthogonal to the mean direction.
The uniform distributed case would correspond to £ = 0.

4. EM ALGORITHM FOR INDEPENDENT MOW

Now we turn our attention to a mixture of several Watson dis-
tributions. Let X = {x1,%2,..27 € SP~!} be a sequence
of i.i.d samples following a moW of K components. Each
sample came from one of clusters distribution but we do not
know which one. We model this information using the dis-
crete latent variable s; associated to each sample z;. Let us
also denote W), (z|p;, ;) as the probability density distribu-
tion of the ¢-th cluster and 7; the prior probability of the clus-
ter. Then the observation x;, which is a column vector, has
the probability density
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where 6 is the set all parameters of the model § = {7, B}
being B the parameters of the Watson distribution for the dif-
ferent K clusters, B = {u, nk}szl. Then the log-likelihood
for the entire dataset X is given by
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In order to calculate the parameters which maximize (4)
the iterative method EM [14] can be used. In every iteration
two steps are solved, the Expectation-step where the respon-
sibilities (i) of each sample is calculated, these r;(i) are
the probability that the sample x; came from the ¢-th distribu-
tion given all available data P(s; = i|X, 6). Then we do the
Maximization-step where the parameters are recalculated.

E-step:
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where s! represents the e-th eigenvector of the weighted
scatter matrix:
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In order to estimate « it is necessary to calculate first p.
However, the estimation of ., depends on the sign of the con-
centration. This yield to a coupled system (9)-(10). To solve
this problem both options are calculated and the solution with
higher log-likelihood is chosen.

For getting &, the iterative Raphson-Newtons method can
be used to solve the implicit formula. However, if the guess
is not sufficiently good, the method may not converge. Fortu-
nately, an analytical approximation [15] can be calculated
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where @ = 1/2 and ¢ = p/2. The algorithm iterate (9)
and (10) until the chosen convergence criteria is fulfilled.

5. EM ALGORITHM FOR MARKOV DEPENDENCY
BETWEEN SAMPLES

In this version of moW, we assume that the data sequence fol-
lows a Markov Chain of order 1. The probability of a sample
being generated from a given cluster, depends on the clus-
ter that the previous sample was generated from and so on.
Therefore in this model we have an initial probability vector
, and a transition probability matrix, A being a;; the element
in the i-th row and the j-th column meaning the probability of



jumping to state j when being at state i. The model parame- Then, EEG allows us to extract mind information by mea-

ters now are § = {7, A, B}. In this case the data consists of  suring the electric potential that the brain generate in the sur-

N independent chains of T" samples. face of the head. This technique is represented in Figure 2.
The Forward-Backward algorithm is used in order to com- Our dataset contain data from 16 different subjects

pute the responsibilities v;*(¢) in an efficient manner. This  exposed to the aforementioned stimulus using 70 elec-

algorithm divides this probability into the factors (i) and  trodes/channels. Each subject generated ~295 trials from

7(¢). In order to estimate A we also need to compute the  each of the conditions and each trial is a time series of 451

probabilities £ (i, j) = P(s} = j,s7 , = i|Y (™, 9). EEG samples in the span of 1 second. Every instant can also
Since the distributions of the mixture p;(x|B;) belong to  be represented as the scalp-maps in Figure 4 to have a spacial

the exponential family, we can obtain its parameters B; using  understanding of the brain activity.

moment matching and therefore we can compute them from

the new weighted correlation matrix S%. Therefore the sim-

plified equation for the E and M steps are: 6.1. Preprocessing of the data

E-step: The data has already been cleaned to some extent (for ex-
I ample the electric spikes produced by eye movement have
ay (1) = pi(z}|Bi) Zajiaf_l(j) being filtered), but further prepossessing is needed. The 3
j=1 applied treatments are average several trials from same con-
I dition, mean removal of channels and projection over the unit
P) = 3 aigp; (e} 1By) - B 0) ©) ypersphere.
j=1 The aim of averaging trials is reducing the noise and it
A3 o< o (i) Be(4) consist on getting one single trial by averaging all of the same

.. . . condition for each subject.
(i, 9) < af(i)agipi(x | Bj)B . .

& (,7) o< af ()aigp; (211 B;) B (9) Mean removal consist on subtracting the mean of all the
M-step: channels in every instant. This makes all the channels have
the same importance since the the information is not in its
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N n; ;nz::l Lastly, all the samples are divided by its L2-norm to
| N I N T, project over the unit hypersphere which is the constraint
aij = — Z &8 (i, 5) E;, = Z Z Z €0i, 5) imposed by the Watson distribution.
n=1t=2 i=1 n=1t=2 Another possible preprocessing would be using a subset
' 1 NI . of the channels or a linear combination of them using tech-
St = & Z AP ()2 2™ niques such as PCA.
P n=1t=1
(10)

7. MICRO-STATE MODELING RESULTS

6. DATA DESCRIPTION AND PREPROCESSING . . . . .
In this section we will obtain the optimal number of clusters

The objective of the project is analyze the mind-state of sub- needed to express the data of .single subject for both classes
jects which are presented with different stimulus, specifically, b}f means of 2-fold cross-val.ldanon (CV) of the data. We
visual stimulus associated to see pictures of familiar faces WIH. compare the rest.llts obtained for the EM and HMM al-
from famous people and scramble pictures of faces. From gorithms, then we will analyze the clusters found using the

now we will refer to each condition as “Famous face” and  Scalp maps and the time information and finally, we comment
»Scramble face”. other results like inter-subjects results and single trials classi-

fication.

Electroencephalogram (EEG)

7.1. Optimal number of clusters
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After preprocessing the data as in section 6.1, we perform CV
{ for different number of clusters K for the EM and HMM al-
| eecraing gorithm and for each class. The training and validation likeli-
hoods are shown in Figure 3 for the class ”Scramble face”. As
we can see, the validations likelihood of both EM and HMM
converge for ~4 when characterizing ”Scramble face”. In the

Fig. 2. EEG sampling case of “"Famous face” it needs ~6 clusters.
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Fig. 3. LL HMM-EM for class ”Scramble face”

7.2. Scalp maps of the Clusters

Figures 4 and 5 show the scalp maps produced by EM and
HMM respectively. Note that due the polarity of the data,
sometimes intense blue might indicate strong activity and
sometimes intense red would do it.

(a) Scramble face
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b) Famouse face
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Fig. 4. Scalp maps from each class generated by EM

(a) Scramble face

Fig. 5. Scalp maps from each class generated with HMM

All clusters have heavy reliance on the visual cortex and
the frontal lobe, which indicates a visually evoked reponse.
Both algorithms put more emphasis on the right-Parietal lobe
for the "Famous face”, which could indicate recognition.
Also, the "Famous face” seems to get a stronger response
from the right temporal lobe, which is connected with emo-
tional memory. Only one cluster differs qualitatively from
both models, specifically the cluster b6 in both figures.

7.3. Time analysis of the Clusters

Figure 6 shows the temporal evolution of responsibilities,
7r4(1), from EM algorithm for the class ”Scramble face”

Mean value of the 70 Channels

Responsability

L8

Fig. 6. r;(i) temporal evolution

From the plot we should note two tings. First, at every
instant one of the clusters dominate the responsibility, which
is almost like a hard decision. Secondly, each micro-state has
some time duration which indicate that the assumption of in-
dependence is violated. This is even more obvious when we
look at the estimated transition matrix from the HMM model

0.93 004 0 003
0.03 0.88 008 0.01

A=1001 008 0.89 0.02 an
001 005 001 0.93

the notorious higher values in the diagonal indicate that
once you fall in a microstate you remain there for a short time.

7.4. Other results

Besides single subject analysis, we performed several sub-
jects clustering. We tried to characterize each class generaliz-
ing among individuals by means of leave-one-out cross vali-
dation. The results indicate that at least 40 states are needed
for the validation set to converge.

8. CONCLUSION

The main conclusions are obtained from the analysis of the
experiments for 1 person using a 2-fold CV scheme to obtain
the clusters. They are summarized in the following points.
The moW and EM-HMM can successfully model the data
better than the simpler modified K-means clustering. This
model offers a bigger expressivity without causing over-
fitting. The number of Watson distribution clusters needed
to express the EEG data for a single person is in the range
4-6. The data reflects temporal correlation indicated by the
EM-HMM transition matrix and likelihood of both methods.
This indicates that the EM-HMM algorithm can model the
data better.

The clusters obtained for the EM and EM-HMM are very
similar, since the data is sparse, the clusters are very distin-
guishable. The scalp map indicates high visual perception
for both classes and “famous face” class has an emotional re-
sponse.
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