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CHAPTER 1
Introduction

In the XVIII century, the mathematician Carl Gottlieb Ehler was obsessed with a
particular problem related to his home city’s bridge system, the famous problem of the
7 bridges of Königsberg. The idea was easy to formulate: which path did an imaginary
traveler had to take in order to cross all the bridges, passing through each of them only
once. The answer was not so easy. After many attempts, Ehler decided to ask for help
from the greatest mathematician he knew, Leonard Euler.

At first, Euler considered the problem unrelated to mathematics, but over time, the
riddle caught his attention. The first thing that he noticed was that it did not matter
the direction from which the bridges were crossed. This insight allowed him to simplify
the problem and represent the bridge system as a graph like in Figure 1.1, where each
piece of land was represented as a node and each bridge as a link.

Eventually, by studying the local characteristics of each node, he demonstrated that
the problem was infeasible unless an even number of bridges was connected to each node
except the starting and finishing node. However, Euler did not think at that time that a
whole new field of mathematics would emerge from these results. This was the beginning
of graph theory.

Figure 1.1: Graph representation of Königsberg bridge system.
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In essence, a graph is an abstract representation of a system’s elements, often called
nodes or vertices, and the relations between them called links or edges. However, from
the apparent model simplicity studying its properties often lead to very interesting
applications in the real world. Here we outline some of the most typical applications:

• Transportation networks: Given a network of roads and cities, how can you find
the shortest path from point A to B? You can, for example, try all the possible
routes but probably a smarter option is modeling it as a graph with the cities as
nodes and the roads as links and apply the Dijkstra algorithm for shortest path
[38]. This is what Google Maps does.

• Social networks analysis: Analyzing a social network can be useful to know how
information is spread, who has more influence in the network, finding subgroups,
etc.

• Biological networks: The human body has more than 120K proteins and studying
their interactions is fundamental to understand the cell biological processes.

• Neural networks: with neurons as vertex and synapses as edges, neural graphs can
be used to study the functioning of our brain.

• Epidemiology: As an example, in 1970, a graph of sexual relations among people
was created to study the spread and origin of AIDS [21].

• WWW : internet web pages can be modeled as a graph where connections are made
based on link references from web pages to other web pages. The famous web
crawlers running on the networks are the key for the Google indexing algorithms
[9].

These are just a few examples of applications of graph theory. However, the scope of
this thesis is constrained to the specific problem of finding communities or also known
as clusters or modules. Such communities are abstractly understood as groups of nodes
that are "alike" which are generally associated with subgraph where its nodes very inter-
connected but poorly connected with the external ones. In the Figure 1.2 the reader can
observe a graph which clearly exhibits communities. It represents research collaborations
in The Santa Fe Institute. A researcher who knows his or her community identity could
find potential collaborations easily. This is just an example of an application, but finding
communities is central for studying a large diversity of topics such as social behavior [19,
35], protein to protein interactions [11, 31], gene expression [12], recommender systems
[28, 39, 45], page ranking [26], image segmentation [41] and many more.

Community detection has advanced significantly since 1980 and has become more
relevant lately as a larger amount of data are available. Due to the ubiquitous relevance
of the topic, the development has come from several disciplines such as computer science,
social science, mathematics, ecology, statistical physics, etc. The huge variety of proposed
algorithms is probably explained by the ill-definition of the community detection problem
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Figure 1.2: Network of Santa Fe researchers collaborations.

[16]. This means that there is no universal definition of what a community is, and
usually, it is defined by the specific question we want to answer or the type of network
we are analyzing. Intuitively, as we said a community is considered a sub-group which
is compactly connected. However, consider a bipartite network as in the figure 1.3. In
this kind of networks, each node is connected to the opposite group nodes but not to
its own, which is contrary to our previous definition of community. This illustrates the
importance of asking the right questions when studying a system, process or network.

Figure 1.3: Bipartite network of animals and plants.

In any case, we will focus, as most of the literature, on trying to find communities that
are tightly connected. To this end, most of the available algorithms can be classified into 3
approaches: statistical inference, dynamical systems, and optimization. In particular, we
are interested in the latter one, where recent developments on semidefinite programming
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(SDP) have to lead to very robust and effective graph partitions even in noisy environments.
Concretely, the aim of this master thesis is to make a comparative analysis of several
algorithms with the SDP formulations, explain its strengths, show connections with other
formulations, and explore new ways to define the objective function, i.e new ways to
define a community.



CHAPTER 2
Background

2.1 Graph Theory, Notation and Definitions
In this chapter we will give a more formal introduction to graph theory by establishing

basic definitions, notations, properties and we will give some examples of archetypal
networks, the stochastic block model or the Erdös–Rényi model and explain its relevance
for the community detection problem.

Mathematically speaking an undirected graph is a pair G = (V,E) where V =
{v1, v2, .., vn} is a set of nodes and E is the set of edges where each edge ek = {vk, vp}
contains the information of the connected pair of nodes. Furthermore, graphs can also
be classified in terms of the nature of its connections. It can be directed or undirected if
the direction of the connections matter. The links can also be weighted to denote the
connection strength between a pair of nodes.

Figure 2.1: Directed graph. Figure 2.2: Undirected graph.

For convenience we introduce the shorthand notation i ∈ A for the set of indices
{i|vi ∈ A}. A graph contain many properties, nomenclature and concepts. Here we enlist
the more relevant:

• Two nodes i, j ∈ V are adjacent/neighboring if {i, j} ∈ E.

• The degree, di, for an undirected unweighted graph, it is the number of nodes
adjacent to i.
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• For a undirected weighted graph, the degree, it is the sum of the edges connected
to the the node.

• Two different measures of a graph "size" are:

|G| := the number of nodes in G
vol(G) :=

∑
i∈G

di

• A path is the set of crossed nodes in order to get from i to j. The distance, δ(i, j)
is the minimum number of nodes needed to cross from i to j.

• It is said that a node i is reachable from j if there is a path that joins them. If
all the nodes of an undirected graph are reachable the graph is connected.

• We talk about self-loops when an edge joins a node with itself. Graphs with
self-loops are not analyzed in the present work.

• We denote 1 as the vectors of ones.

• Ā will denote the complement of a set of nodes A ∈ V . The complement is the rest
of nodes from V that are not included in A.

2.2 Linear Algebra Representation
A graph can be represented in a matrix form. Concretely, it can be represented by

the square adjacency matrix, W, where wij represents the connection weight between
the nodes i and j. For example, an unweighted graph would have wij = 1 if nodes are
connected and wij = 0 if nodes i and j are unconnected. The following matrices Wd and
Wu are the corresponding adjacency matrices of graphs in Figure 2.1 and 2.2 respectively.

Wd =



0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 1 0 0 0 0
0 0 0 1 0 1
0 0 0 0 0 0


Wu =


0 1 1 0
1 0 1 0
1 1 0 1
0 0 1 0



Note that the adjacency matrix of an undirected graph is always symmetric as
wij = wji for every j and i. This representation allows us to use linear algebra to study
the graph properties. For example, if two nodes, i, and j, happen to share the exact same
nodes implies that W is not full rank as its two columns, Wi and Wj would be linearly
dependent.
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2.2.1 Counting Steps with Matrix Multiplication
Assuming that every node is reachable(connected graph). We define the path-length

n between two nodes i and j as a list of ordered nodes i, k1, k2, ..., kn−1, j which are
consecutively connected, i.e:

ai,k1 = ak1,k2 = ... = akn−2,kn−1 = akn−1,j = 1

In other words, it is the number of nodes needed to cross in order to get from i to j.
Hence, the adjacency matrix indicates the path-lengths 1 if aij = 1 or higher if aij = 0.
However, what happens with W 2? Knowing that its entries are (W 2)ij = ∑N

k=1 aikakj we
can interpret as following: for each connected node to i check if there is a connection
with j. this is basically the sum of path-length 2 between i and j. Readily, we can see
how (W 2)ii is similar to the degi as it counts the number of walks that start and end in
the same node. It is always possible to visit the adjacent nodes and come back through
the same connection. This result can be generalized to higher order exponents

(W n)ij =
N∑

k1=1

N∑
k2=1

N∑
kn−2=1

N∑
kn−1=1

ai,k1ak1,k2 ...akn−2,kn−1akn−1,j

which measures the number of walks of length n that connect the nodes. This leads to
the following lemma:

Lemma 1: The quantity (W n)ij counts the number of different walks (i 6= j) or closed
walks (i = j) of length n between nodes i and j.

2.2.2 The Graph-Laplacian
The Laplacian [32] is another interesting matrix for analyzing graphs. It is defined as

L = D −W , where D is the diagonal matrix which entries dii are the node i degree. For
example, the Laplacian of the undirected graph from Figure 2.2 would be

L =


0 1 1 0
1 0 1 0
1 1 0 1
0 0 1 0

−


2 0 0 0
0 2 0 0
0 0 3 0
0 0 0 1

 =


2 −1 −1 0
−1 2 −1 0
−1 −1 3 −1
0 0 −1 1


Laplacian representation of graphs have been studied throughly in the literature.

Here, we enumerate some its properties:

1. For every vector x ∈ Rn we have

xTLx = 1
2

n∑
i

n∑
j

wij(xi − xj)2 (2.1)
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2. L is contained in the set of positive semidefinite cones, Sn+. i.e. L is symmetric
and positive semidefinite

3. 0 is always an eigenvalue associated to the eigenvector 1.

4. The algebraical multiplicity of λ = 0 is the number of connected components in the
graph

Proof statement (1):

xTLx = xTDx− xTWx =
n∑
i=1

dix
2
i −

n∑
i=1

n∑
j=1

xixjwij

= 1
2

( n∑
i=1

dix
2
i − 2

n∑
i=1

n∑
j=1

xixjwij +
n∑
j=1

djx
2
j

)
= 1

2

n∑
i=1

n∑
j=1

wij(xi − xj)2

Proof statement (2): the symmetry of W is maintained as D is just a diagonal
matrix. The positive semi-definiteness follows from the statement one, xtLx ≥ 0 for any
x ∈ Rn.

Proof statement (3): all the rows sum to one. If all the rows are linearly combined
with equal weighting, we get the vectors of zeros, i.e.

L1 = ~01

Proof statement (4): each connected component will be formed by a set of linearly
dependent columns in the adjacency matrix which will result in k eigenvectors associated
to eigenvalue 0, where k denotes the number of components. In addition to the eigenvector,
1 from statement 3, it will result in k eigenvectors with eigenvalue 0. For example:

L =


2 −1 −1 0
−1 1 0 0
−1 0 1 0
0 0 0 1


Would have the eigenvectors v1 = [1, 1, 1, 1], v2 = [1, 1, 1, 0] and v3 = [0, 0, 0, 1] which
satisfy:

L~vn = ~vn0

2.3 Centrality, Communicability, and
Betweenness

We can have different measures that tell us information about a network. Some
examples are the centrality, communicability, and betweenness. We will see that there
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are many ways to formally formally these measures, but we can abstractly define them
as:

• Centrality: the importance of a single node in terms of surrounding density
• Communicability: measures the well-connectedness between 2 nodes
• Betweenness: how much information travels through a node. If for instance, we

imagine a road network connecting cities, we can think of betweenness as how many
cars travel through a particular city, i.e how important such node is for connecting
with the rest

Figure 2.3: Betweenness illustra-
tion.

Figure 2.4: Communicability and
centrality illustration.

For instance, in Figure 2.3 the edge bridging the two clusters would have a high
betweenness since it would be the path for every walk across clusters. In Figure 2.4
we have an example of high centrality where the node is surrounded by many nodes.
Inversely, the node 4 would have a low centrality. Finally, in the same Figure we can
observe how the node 1 and 3 would score a high communicability as many short paths
are available between both nodes. Mathematically the easiest way to define the centrality
is by means of the degree,

di =
N∑
i

aik = (We)i

However, this measure does not take in account anything but the immediate sur-
roundings of the node. Katz proposed in 1953 [25] a more sophisticated measure

ki :=
N∑
j=1

∞∑
k=0

αk(W )kij
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which also measures the impact of further nodes but giving more weight to the closer
ones. However, a more general framework can be defined.

2.3.1 General Framework
As stated above, centrality, communicability, and betweenness are measures of well-

connectedness which can be related to powers of adjacency matrix. For instance, the
centrality is equivalent to the diagonal of the squared adjacency matrix W 2, which is the
sum of all the closed loop walks of length 2. However, the closed loop walks of length 3
are an indicator of well-connected neighbors. And the same can be extended for longer
closed loop walks. Adding this information result in a richer measure of connectedness.
Nonetheless, information is less likely to travel through longer paths so it seems natural
to introduce a down-weighting factor. With this in mind, we introduce the following
function

f(W ) =
∞∑
n=1

cnW
n (2.2)

where {cn}n≥1 is the sequence of down-weighting coefficients where its elements must
be non-negative. The sequence must make the sum convergent. Then we can define the
f-measures as:

• Centrality of node i: f(W )ii

• Communicability between i and j: f(W )ij

• Betweenness of the node r:

1
(N − 1)2 − (N − 1)

∑∑
i 6=j,j 6=r, 6=r

f(W )ij − f(W − E(r))ij
f(W )ij

While the definitions of centrality and communicability might now seem obvious, there
might be a gap in the betweenness formal and abstract definition. The formal definitions
measure what is the overall communicability lost of the network if we remove the node
r. Then (W − E(r)) eliminates the connections of r from W where E(r) ∈ RNxN has
non-zero only in the row and column r, and row and column r have 1 wherever W has 1.
Each of the terms in the sum is a normalized value and the coefficient 1/(N−1)2−(N−1)
averages over all the terms. An interesting property of the infinite sum worth to study is
its spectrum

f(W ) =
∞∑
n=0

cnW
n = c0W

0 + c1W + c2W
2 + ...+ ckW

k + ...

= c0I + c1QΛQT + c2(QΛQT )2 + ...+ ck(QΛQT )k + ...

= c0I +Qc1ΛQT +Qc2Λ2QT + ...+QckΛkQT + ...
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where the QΛQT is the eigendecompostition of the symmetric adjacency matrix W.
Clearly, now we can see how the function in (2.2) is basically a mapping of its spectrum
as

eig(f(W ))i =
∞∑
n=0

cnλ
n
i = f(λi)

2.3.2 Special Case: Matrix Exponential
In particular, if we choose a weight decay of cn = 1

n! it results in

f(W ) =
(
I +W + W 3

3! + ...+ W k

k! + ...
)

which is the definition of the matrix exponential exp(W ). This is a perfectly valid
down-weighting as it constantly increases the dumping over long walks and leads to a
convergent sum. This construction, defined by Estrada [15], has also the advantage of
resulting in a well known matrix function. The spectrum is mapped as

eig(exp(W ))i =
∞∑
n=0

1
n!λ

n
i = eλi

2.3.3 Special Case: The Resolvent Function
The previous case has not much more motivation besides that it leads to a nice

computationally form. Also, Estrada proposed in [15] to down-weight each path of length
k compared with maximum possible paths of the same length admitted by KN defined
as the fully connected graph of the same size. While these sequences would naturally
decrease as longer paths outnumber shorter ones, in KN , the exponential function neglect
sharply the long walks.

From Lemma 1.1, we can easily calculate the path-length k of KN by knowing that
it correspondent adjacency matrix is (J − I) where J ∈ RNxN is the matrix of all ones.
However, Estrada approximated the infinite sum for large N as

f(W ) = (I − αW )−1 (2.3)

where the parameter α controls the down-weighting sequence.

2.4 Graph Cuts
Graph-cuts are intimately related with community detection. Formally defined, a

cut is the partition of a graph, G = (V,E), in two subgraphs, S ∈ V and S̄ ∈ W\V ,
i.e dividing the vertices into two disjoint sets. Such cuts can be performed in different
manners.
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2.4.1 Minimum and Maximum Cuts
If for example we would require to make a division where each sub-graph contains as

few as possible connections, we would be talking about the well-known maxiumum cut
problem defined as:

max 1
2
∑
i∈S

∑
j∈S̄

wij (2.4)

which can be reformulated as

max
x

1
4

n∑
i=1

n∑
j=1

wij(1− xixj)

s.t xi ∈ {−1, 1} fori = 1, ...n
(2.5)

where xj = 1 if j ∈ S and xi = −1 if i ∈ S̄. This is a combinatorial problem which was
demonstrated to be NP-complete [23]. However, Goemans and Williamson [18] proved
that the problem can be approximated within 0.875 of the global solution via semidefinite
programming. This is a remarkable result for a NP-hard problem.

Figure 2.5: Min-cut illustration. Figure 2.6: Max-cut illustration.

Contrary, our purpose is actually partitioning in a way that connections between the
sub-graphs is minimum or alternatively that each sub-graph is densely connected. In
this case we are talking about another well-known problem called minimum cut.

min
x

1
2
∑
i∈S

∑
j∈S̄

wij (2.6)

which is also a combinatorial problem, with the trivial solution of no cutting edges.
There exist modified version, as the sp-cut where you have to find the minimum-cut that
divide the nodes s and p. This problem can be solved efficiently in polynomial time [42].
However, it come with a major drawback. It often leads to trivial solutions where only
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one node is separated from the rest of the graph. In practice communities contain several
nodes so we need to include some kind of group size balancing constraint, as follows

min
x

xTLx

s.t xi ∈ {−1, 1}
1x = 0

(2.7)

since, as proved

xTLx = 1
2

n∑
i

n∑
j

wij(xi − xj)2

We could built an equivalent problem by writing in terms of the adjacency matrix by
minimizing −xTWx = −∑n

i=1
∑n
j=1wijxixj. During the rest of the document we will

stick to the Laplacian formulation.

Unfortunately, introducing this balancing constraint in 2.7 comes with a big compu-
tational expense as the problem becomes NP-hard [43]. Many relaxed versions have been
proposed, in particular, spectral clustering is a very popular one which we will explain
shortly. Semidefinite relaxations are another breed which has gain popularity lately, [3,
5, 22]. The latter kind of relaxations is the main focus of this thesis and the core of the
proposed solution. Finally, one could extend a graph-cut to admit several partitions.
If we define C(A,B) = ∑

i∈A,j∈B where A and B denote subgraphs, a k-cut would be
defined as

cut(A1, ...Ak) := 1
2

k∑
i=1

C(Ai, Āi) (2.8)

Nonetheless, the scope of the present work is attained to the case of k = 2.

2.4.2 Spectral Relaxation of Balanced Min-cut
Before explaining these results we have to make a small parenthesis and explain what

is a relaxation, which is central for the understanding not only this section but the core
of the present work.
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What is a relaxation?

A relaxation, in mathematical optimization, is an approximation of a problem
by a another one that is easier to solve. For instance, if we had the following
minimization problem

z = min{f(x) : x ∈ X ⊆ Rn}

and its relaxation version

zR = min{fR(x) : x ∈ XR ⊆ Rn}

Then the two following conditions must satisfy:

1. XR ⊇ X

2. fR(x) ≤ f(x) for all x ∈ X.

Meaning that the the original feasible set, X, is contained in the expanded set,
XR, and that the original function is always greater or equal than the relaxed
version for points in the original set.

This implies that we can get lower bounds to the original problem by solving the
relaxed version and forcing feasibility. Better relaxation will produce smaller gaps
between the true solution and the lower bound. Furthermore, if f(x) = fR(x) for
all x ∈ X, then solutions for the relaxed problem that are feasible on the original
problem are also solutions for the original problem.

Now, the spectral relaxation consist on relaxing the discreteness constraint of (2.7) as

min
x

xTLx = 1
2

n∑
i=1

n∑
j=1

wij(xi − xj)2

s.t ||x||2 =
√
n

1x = 0

(2.9)

This is a valid relaxation as the new problem domain includes the original one and it
is also a tight approximation as the Figure 2.7 illustrated. In the there, the red dots
represent the feasible solutions for the problem where x ∈ R2. The feasible domain in the
relaxed version is just the circle that contain them. For more dimensions it is generalized
with an hyper-sphere.

It is not straightforward to understand why the new problem is easier to solve.
However, it finds out that the solution is given by the second eigenvector of L(assuming
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Figure 2.7: Spectral relaxation in R2.

that the graph is connected). This can be shown with a simple eigenbasis decomposition:

xTLx = xTQΛQTx

= yTΛy

=
n∑
i=1

λiy
2
i

where the change of variable y = QTx was made. We can see that the minimal objective
value would be the vector associated with the smallest eigenvalue. However, recall
that for a connected graph the smallest eigenvalue is 0 associated to the eigenvector 1.
Nonetheless, the constraint 1x = 0 removes such trivial solution and leads to the second
eigenvector since L is symmetric and its eigenvectors are mutually orthogonal.

2.5 Graphs with Planted Partitions
2.5.1 The Stochastic Block Model

While there are many types of graphs we are exclusively interested in the ones that
display communities. For this purpose, the SBM, which falls into the category of random
graphs, provides an excellent framework. It has been extensively studied in the literature
[24, 2, 17] and different variations have arisen.
Each node of the SBM v contains a latent variable zv = 1, · · · , k indicating to which
cluster it belongs. This assignment is made by multinomial distribution parametrized by
γ, i.e. γk = P (zv = k). Then, the probability of linkage among nodes depends if they
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belong to the same or different clusters. The links are generated by independent draws
of a Bernoulli distribution which parameters are specified in the affinity matrix ρ ∈ Rkxk.
Hence the model is defined as

SBM(n, γ, ρ)
{

zi ∼iid Multinomial(γ)
wij|zi, zj ∼ind Bernoulli(ρzizj

) (2.10)

The focus of the present thesis is the undirected bi-cluster case of k = 2:

ρ =
[
p1 q
q p2

]

where p ad q are denominated the inter-cluster and intra-cluster probabilities.

Figure 2.8: Balanced SBM with p1 = p2 = 0.3 and q = 0.01 and γ = {0.5, 0.5}.

The major advantage of SBM is its generative nature as ground truth labels can be
utilized to measure the accuracy of the algorithms. On the other hand, one may wonder
if the model is a good fit for real-world networks, which leads to the next variant, the
DC-SBM.

2.5.2 The Degree-Corrected Stochastic Blockmodel
One of the features of networks generated by the SBM is the degree homogeneity

among the nodes. Since the linking probability is the same for all the nodes in the same
community, on average every node connects to the same amount of nodes. Although this
characteristic can be desirable in some cases many real networks present highly skewed
degree distributions. In fact, Barabási and Albert [6] demonstrated that most of the real
networks follow a power law distributions.

In order to accommodate the necessity of degree heterogeneity, Newman introduced
the DC-SBM [24] which is defined as
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Figure 2.9: Special SBM case where inter-cluster and intra-cluster probabilities are the
same with p1 = p2 = q = 0.15 and γ = {0.5, 0.5}. This corresponds to the
Erdös–Rényi model..

DC-SBM(n, γ, ρ, θ)
{

zi ∼iid Multinomial(γ)
wij|zi, zj ∼ind Poisson(θiθjρzizj

) (2.11)

The difference with the general SBM is the introduction of parameter θ ∈ Rn which
scales the linking probability of each individual node. The higher θu, the higher linking
probability of u with every other node. Additionally, the Bernoulli is swapped by a
Poisson distribution in order to be able to do the scaling. Notice that this allows the
existence of more than one edge between two pairs of nodes and self-loops. However, in
the limit of a large sparse graph, the probability of an edge and the expected number of
edges. By making sure that the expected value is no higher than 1, there is essentially
no difference. In the Figure 2.10 it is shown a DC-SBM ensemble.
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Figure 2.10: DC-SBM for p1 = p2 = 0.03, q = 0.005, γ = {0.5, 0.5} and θn =
3Pois(0.1). Nodes with big radius represent high degree.



CHAPTER 3
Community detection state

of the art
3.1 Spectral Methods

Spectral clustering is an old unsupervised machine learning technique popularized at
the beginning of the century [40, 29, 36] and nowadays it is used in most of the data
analysis task as first attempt to find groups. Besides its computational simplicity, it is
not straight forward to see how it works. In this section we will explain the method and
we will see how it is highly connected to the spectral relaxation of the balanced min-cut
from previous chapter.

Firstly, spectral clustering maps data from Euclidean space into a graph, therefore
it can also be used for community detection by just skipping this step. In order to
make the mapping, the graph adjacency matrix is constructed by the pairwise similarity
between each data point. For instance, given a dataset X = {x1, ..., xn} where x ∈ Rd

the adjacency matrix, W , can be constructed as

wij = f(xi, xj) = exp
(
− ||xi − xj||

2

2σ

)
where the strength of the connection is determined by the distance between the data
points. This similarity function is known as Gaussian kernel, but there exist many other
options.

Now, let us assume that a connected graph has been generated and we would like
to find k clusters. Next step is to build the Laplacian matrix, L, from W . From its
the properties, we have already seen that the eigenvectors associated to the eigenvalue
0 denote the number of connected components. Here we are assuming that we have
only one connected component(a connected graph), but this idea gives a hint of what a
non-zero but small eigenvalue of the Laplacian means: directions of high separability.

To illustrate this concept consider the toy example from the Figure 3.1 which consist
of 400 independently drawn samples from 4 different Gaussian distributions. After
constructing the adjacency matrix the eigenvalues of its Laplacian are computed, Figure
3.2. As expected the first eigenvalue is zero and the following 3 are very small (but
non-zero).
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Figure 3.1: Generated data. Figure 3.2: Laplacian Eigenvalues.

In the Figure 3.3 it is shown the eigenvectors associated to the 4 smallest eigenvalues
where the x-axis represent the nodes which have not been ordered. The first eigenvector,
as always is 1. But know we can see how encoding the nodes with the 3 following
eigenvectors make them completely separable. In fact, for this specific simple case only
the first one would be sufficient.

Finally, the last step is to label each node/data-point. If we construct U ∈ Rn×(k−1)

where the columns are the first k eigenvectors (after ordering and excluding the first),
we can feed to a simpler linear classifier such as k-means [30]. We can then summarize
all the steps

1. Create a adjacency matrix using a similarity function and setting wii = 0 for all
i = 1, ...n

2. Compute its Laplacian L ∈ Rn×n.

3. Compute the first eigenvectors, u2, u3, ...uk, of the k smallest eigenvalues excluding
the first. And let Un×(k−1) be the matrix composed by such eigenvectors.

4. Defining yi ∈ Rn for i = 1, 2, ...n as the row vectors of U, make clustering of the
points yi using the k-means algorithm into the clusters C1, ...Ck.

Spectral methods are highly connected with the dimensionality reduction method of
Principal Component Analysis (PCA) where one extract the eigenvector associated to
the biggest eigenvalues of a covariance matrix, which is also a symmetric matrix. Also
we can see the spectral relaxation of the balanced min-cut as a special case of Spectral
Clustering where k = 2 and instead of using k-means we simply use rounding to 1 or −1.
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Figure 3.3: Eigenvectors of the 4 smallest eigenvalues.

3.2 Statistical Inference
Community detection can be also tackled from a statistical point of view. The idea

is to fit a graph generative model with planted partitions. The SBM and its variants
introduced in the previous chapter is the most used in the literature [44, 46, 24]. If we
where given the vector z ∈ RN denoting the label of each node, the log-likelihood of the
general SBM would be

logP (W, z|γ, ρ) =
k∑
r

nrlogγr + 1
2

( k∑
r,s

mrslogρrs − nrnsρrs
)

where mrs is the number of edges running from group r to group s and nr(ns) the number
of nodes in r (s). Maximizing over γ and ρ gives,

γ̂r = nr
n
, ρ̂rs = mrs

nrns
(3.1)

But assuming that we already have the partition ,z , does not get us anywhere, as
this is exactly what we would like to find. Instead, we are interested on
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P (W |ρ, γ) =
∑
z

P (W, z|ρ, γ) (3.2)

However, marginalizing over z becomes computationally intractable as it amounts for
a sum over all the possible partitions (kn). Several approaches to tackle the problem
have been proposed. In particular different variants of the EM algorithm [33], which
consist in iterating over two steps: and Expectation (E) step which approximates the full
marginal, P (W |ρ, γ), and the Maximization (M) step which estimates γ and ρ in order
to maximize the approximation. Several approaches to the E step have been proposed
such as using Monte Carlo Markov Chain (MCMC) algorithm to sample from the joint
posterior P (W, z|ρ, γ) [37], belief propagation techniques [46] or variational methods [27].
Once that z is fixed, the E step can be solved as in (3.1). Eventually, after convergence,
we recover the estimations ẑ, γ̂ and ρ̂.

Figure 3.4: Marginal probabilities of group membership in a network.

Statistical inference approach has advantages such as the probabilistic framework
which provides uncertainty measures as in Figure 3.5. However, its most important
drawback is the difficulty of choosing the number of clusters k. Maximization over all
possible k would lead to the trivial solution of k = n, i.e one cluster per node(overfitting).
In the machine learning community, this problem is generally tackle by multi-fold
crossvalidation but network data is globally dependent which makes it difficult to split
into training and validation sets. Several heuristic have been proposed [20, 10]. Finally,
one also have to hope that the chosen model is representative of the true network.
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3.3 Optimization Based Methods
Optimization methods are probably the most popular approach to solve the community

detection problem. Generally, it consist on finding the optimal value of a function which
measures the goodness of the partition, such as the graph-cut objectives introduced in the
previous chapter. However, the most popular one is the modularity function introduced
by Girvan and Newman in 2004 [34]. Its general formulation is as follows

Q = 1
2n

∑
ij

(Wij − Pij)δ(Ci, Cj) (3.3)

where n is the number of edges of the network, the sum runs over all pairs of nodes i
and j, Wij is the element of the adjacency matrix, Pij is the null model term and in the
Kronecker delta at the end Ci and Cj indicate the communities of i and j. The matrix
P represents the null model derived from averaging randomized versions of the graph in
such way that we preserve some of its features. Hence, the modularity function measures
how different is the original graph, W , from its randomized version, P . A widely spread
choice of the null model is Pij = didj/2m where di and dj denotes the already defined
degree from nodes i and j and corresponds to the expected number of edges between
the pair if the network would be assembled again. Therefore, such choice preserve, on
average, the degree of each node. It yields to the classic form

Q = 1
2n

∑
ij

(Wij − Pij)δ(Ci, Cj) (3.4)

Modularity maximization is, unfortunately, an NP-hard problem [8] so for sufficiently
large networks we can just hope to find optimal approximations.

Figure 3.5: Dendrogram representing the hierarchical algorithms type of output. In the
bottom the circles represent the individual nodes and as we move upwards
they connect forming larger communities. The horizontal red line denotes
the optimal split. .

One of the most popular methods for approximating Q is the Louvain algorithm [7]
which performs a greedy optimization in a hierarchical fashion. At first every node i
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is given its own community. Then the change of modularity is evaluated by removing
i from its own community and merging into the community of each neighbor j. The
combination with higher modularity change is then executed. This process is repeated
for each node until no improvement of the modularity is possible. In second phase,
representing next level of hierarchy, a smaller network is built where each community
from first phase is converted into a node. Then weighted links between the communities
are created and the first stage can be applied again. The algorithm finish when the level
of higher modularity is obtained.

Two major advantage of hierarchical are the computational speed which make it easy
to escalate for big networks and the ability to find automatically the best number of
partitions. On the other side, these methods tent to give sub-optimal solutions.

3.4 Dynamics Based Methods
Communities can also be detected by running dynamical processes in the network.

This include diffusion processes, random-walk dynamics, synchronization, etc. The
Girvan-Newman (GN) algorithm [34] is one of such kind, concretely it is based in the
already introduced betweenness measure. If you recall from chapter 1, the idea of be-
tweenness is to estimate a fraction of all possible walks that pass through a node/edge,
which can be understood as the amount of information flowing in that specific node/edge.
Edges connecting two communities generally have higher betweenness as walks from one
community to another have less available path options which produce a bottleneck effect.
For example, in the Barbell-graph from Figure 3.6, any walk across communities is forced
to pass through the middle edge which translates into a the high edge-betweenness from
Figure 3.7.

Figure 3.6: A barbell-graph. Figure 3.7: Edge betweenness.
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In the GN algorithm, the graph is divided by cutting the edges with highest between-
ness. Then this is repeated iteratively in the remaining subgraphs until no edges are
left. In each subdivision the modularity is evaluated and the one with highest value is
selected. We can enumerate its steps as follow:

1. Calculate betweenness scores for all edges in the network.
2. Find the edge with the highest score and remove it from the network.
3. Recalculate betweenness for all remaining edges.
4. Repeat from step 2.
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CHAPTER 4
Semidefinite Relaxation

In the Background chapter we have already introduced one possible relaxation of the
balanced min-cut problem. In this chapter we introduce another kind of relaxation, the
semidefinite relaxation (SDR). The core idea is to transform a non-convex Quadratically
Constrained Quadratic Program (QCQP) into a convex problem by expanding the
feasible domain. Convex problems are easier to solve by most of the available solvers.
Additionally, in a convex problem if we find an optimal, it is guaranteed to be the global
optima and not just local. We will introduce SDR by with the Schur relaxation of the
max-cut problem.

4.1 Schur Relaxation of QCQPs
Recall how the formulation of the max-cut in (2.5) leads to a NP-hard combinatorial

problem. We can introduce the variable Y = xxT

max
x

1
4

n∑
i=1

n∑
j=1

wij −
n∑
i=1

n∑
j=1

wijyij)

s.t x2
i = 1 for i = 1, ..., n

s.t Y = xxT

(4.1)

which by knowing that tr(WY ) = ∑n
i=1

∑n
j=1 wijyij and that Y is positive semidefinite

matrix of rank 1, one can further simplify by

max
x

1
4

n∑
i=1

n∑
j=1

wij − tr(WY )

s.t Yii = 1 for i = 1, ..., n
Y � 0
rank(Y ) = 1

(4.2)

At this point the problem (4.2) and (2.5) are equivalent and still NP-hard. However,
now it is easy to identify the bottleneck. The rank constraint. While the rest of the
constraints are convex respect to Y, the latter is non-convex. So if we drop the constraint,
the problem is relaxed as
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max
x

1
4

n∑
i=1

n∑
j=1

wij − tr(WY )

s.t Yii = 1 for i = 1, ..., n
Y � 0

(4.3)

This is the so called SDR since the problem (4.3) is an specific instance of an SDP. The
new convex formulation allows us to solve the problem numerically in an efficient manner,
with the standard available solvers such as interior-point methods. The only thing left to
do is to unbundle the vector solution to the QCQP (2.5) from Y = xxT . If by chance
the solution would be rank 1, then the first eigenvector of Y would be the the global
solution to 4.5. This is rarely the case, so lower rank approximations and rounding is
one way to extract feasible solutions. Randomization is another example, but we will
cover with more details each method in the following section.

It is reasonable to wonder how good the solution of the approximation is to the real
solution. Goeman and Williamson proved that with randomization the relaxed solution
gives the tight upper bound of

0.87856RELAX ≤ MAXCUT ≤ RELAX
Which means that the relaxed solution is guarantee to be in the worst case, 12%, worst
than the global solution, which is remarkable for a NP-hard problem.

4.2 Extracting Labels from SDR Solutions
As already mentioned, once the SDP is solved the solution to the vector solution for

the quadratic non-convex problem has to be extracted, i.e., we have to undo the change
of variables X = xxT . In this section, we will explain three different methods.

4.2.1 Rank-1 Approximation
Let’s assume that we got lucky and the solution of our SDP satisfy the dropped

constraint rank(X) = 1, meaning that we got the optimal solution. At this point
recovering x is straight forward as the singular value decomposition of a rank-1 matrix
contain a single non-zero vector

X = vσvT

and vector x =
√
σv would satisfy X = xxT . However, while rank-1 solutions are rather

rare, it might be reasonable to make a rank-1 approximation i.e

min
x
||X −Xp||F

s.t rank(Xp) = 1
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By the Eckart–Young–Mirsky theorem [13], we know that this problem has a analytical
solution which is, precisely, the factorization using the first singular value

X ' Xp = v1σ1v
T
1

The only difference now is that the solution x = √σ12v1 will not satisfy the discreteness
constraint. We can solve this by using the sign function which map the entries of a vector
to 1 or -1. Therefore the solution would be x̂ = sgn(v1).

4.2.2 Low Rank Approximation and K-means
One can also argue that a rank-1 approximation would erase a lot of information and

higher order rank approximations would be more convenient. Consider the the case of
matrix in the Figure 4.1

Figure 4.1: Low rank matrix. Figure 4.2: Ordered eigenvalues.

By inspecting its eignvalues in Figure 4.2 it is obvious that a rank-3 approximation
would be an almost perfect approximation. It’s a common approach, once the singular
values are ordered, to sequentially add them to the approximation while the difference in
magnitude between the current and the next is higher than a threshold. In our example,

X ' V ΛV T =
[
v1 v2 v3

] λ1 0 0
0 λ2 0
0 0 λ3


v

T
1
vT2
vT3


Unfortunately, V ∈ Rnx3 is not a valid solution as a vector, x ∈ Rn is needed. Nonetheless,
this can be solved be applying k-means in the same fashion that spectral clustering does.
The input data would consist on n samples of 3 dimensions, and for the case of k=2, the
output would be a vector x ∈ Rn with entry values xi = {1,−1}.



30 4 Semidefinite Relaxation

4.2.3 Randomization
Randomized rounding is a very powerful method for extracting solutions to QCQP

from SDR solutions and is the key technique to find upper and lower bounds such as the
one of Goeman and Williamson in the max-cut. It can be understood by interpreting the
variable X as a covariance matrix from a Gaussian distribution. Recall, the covariance
matrix is defined as

Cov[x] = E[(x− E[x])(x− E[x])T ] = E[xxT ]

which for the case of mean zero it resemble the change of variables Y = xxT . Following
this idea, let us consider the stochastic formulation of the SDR max-cut

max
Y'0,Y ∈Sn

Eξ∼N (0,Y )

[ n∑
i=1

n∑
j=1

wij − ξWξT
]

s.t Eξ∼N(0,Y )[ξ2
i ] = 1 for i = 1, ..., n

(4.4)

i.e want to find the covariance matrix, Y, that by sampling vectors, ξ, minimize in
expectation the original problem while remaining feasible. This is equivalent to the SDR
in (4.3). Now we can generate potential solutions by sampling from (0, X) and pick
the one which generate lower value after plugging in the objective function. The only
problem is that some of the samples might not be feasible and we need to enforce it. For
our example,(4.3), a simple sgn(x) would ensure feasibility of each sample. However, in
practice each feasibility enforcing is problem dependent.

given a SDR solution, Y ∗, and N number of randomizations;
for t =1,...N do

generate sample ξt ∼ N (0, Y );
make sample feasible, e.g: xt = sgn(ξt);

end
determine t∗ = arg maxt=1,...N(−xtWx) ;
Result: x̂ = xt∗ is the approximate solution to the QCQP problem

Algorithm 1: Randomized rounding algorithm

4.3 Minimum Cut SDP Relaxation
The SDR for the balanced min-cut is not much different. The only difference is that

now we have to deal with an additional constraint. For convenience, we can change
slightly the formulation in (2.7) to

min
x

1
2x

TLx

s.t x2
i = 1 for i = 1, ...n

(1x)2 ≤ δ2

(4.5)
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where δ denotes the desired balancing among the groups. For example δ2 = 0 would
result in two groups of exact same size, in the case that n is odd. The SDR is now
straight forward

min
Y

− tr(CY )

s.t Yii = 1 for i = 1, ..., n
tr(11TY ) ≤ δ2

Y � 0

(4.6)

where Y = xxT . This leads to what we will call the balanced-min-cut-SDP formula-
tion. And now, by using one of the available methods for rounding, one can obtain a
approximate solution for the QCQP, (4.5).

In recent developments on semidefinite programming for graph cuts, Bandeira et al.
[4] produced the following semidefinite relaxation of (2.7)

max
x

tr(BX)

s.t Xii = 1 for i = 1, ..., n
X � 0

(4.7)

where X = xxT and

B =
{
bij = 1 if e = {i, j} ∈ E
bij = −1 otherwise

Basically, this formulation comes from integrating the balancing constraint into the
objective function as one would do when constructing the Lagrangian function. And it
can be proven that (4.7) is equivalent to

max
x

tr((W − α11T )X)

s.t Xii = 1 for i = 1, ..., n
X � 0

(4.8)

for some choice of α. In the same way (4.6) and (4.8) are equivalent for some choice of δ.
The latter formulation, which we will call regularized-min-cut-SDP, has the advantage
that by using randomization with such objective function we bias the samples towards
feasible solutions while in the balanced-min-cut formulation most of the samples would
not satisfy the balancing constraint. On the other hand, it becomes hard to match the
regularization parameter, α, with the group balancing, while in the balanced-min-cut-
SDP it is straight forward. In practice, most of the available solvers compute both the
primal and dual problems, so one could solve the balanced-min-cut-SDP and use the
regularized-cut-SDP objective to sample.
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4.3.1 Uncertainty Interpretation of Randomized
Rounding

One of the major advantages of the randomized rounding is the uncertainty inter-
pretation of the SDP solution. Since we are considering X as the covariance estimation
to the stochastic maximization problem such as (4.4) we have a way to measure how
tight the estimation is. If for example the solution X is rank-1, all the samples would be
exactly the same. The lower the rank of the estimation, the more confident we would be
about our estimation.

4.4 Augmented Adjacency Matrix
For now we have perform graph-cuts based on just the adjacency matrix information,

i.e just the direct connections between the nodes. But we are not restricted to just this
family of similarity matrices. In practice, we can use any matrix which penalize clustering
together two nodes of different communities and enhance the ones of same community.
In other words, we want a similarity matrix S ∈ Rnxn which entries sij are high when
xi = xj and low when xi 6= xj.

f(x) =
n∑
i=1

n∑
j=1

sijxixj

4.4.1 Communicability
We have already talk previously about another kind of similarity matrix, the communi-

cability matrix, C. In practice a densely connected cluster would be highly communicated
as well, as paths would be more often within clusters than across clusters. Estrada
already proposed a communicability based community detection [14], which consist in
some kind of spectral decomposition of the communicability matrix, followed by K-means
(same procedure as Spectral clustering). This idea can be easily extended to the SDP
formulation.

Recall that the communicability matrix is an infinite weighted sum of the adjacency
matrix power. Also recall, that for a unweighted and undirected graph the entries of An

(W n)ij = walks of length n between node i and j

One might wonder which dumping weight would enhance separability of the clusters .
Intuitively, shorter paths would be more often within clusters than longer ones. Once that
walks are long enough would connect any pair of nodes indifferently of the community
that they belong. A simple visual inspection on the Figure 4.3 confirms the intuition,
as the the higher order powers lead to more homogeneous matrices. Fortunately, both
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Figure 4.3: Matrix powers of the adjacency matrix.

definitions of communicability discussed in previous chapters enhance the shorter paths.
This are some examples of enhanced adjacency matrix based on random walks:

• C = exp( W
max(eig(W ))

• C = (I − sW )−1

• C = W + αW 2

• C = W + αW 2 + γW 3

where α and γ are weighting coefficients. The first term corresponds to the normalized
Communicability matrix based in the exponential matrix. The second term is the
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communicability based in the Resolvent and finally, the last two terms are the adjacent
matrix in addition of walks of length 2 and 3.

4.4.2 Shortest-Distance
Considering longer connections among nodes is one way to exploit topological in-

formation of the network, but is not the only one. Another interesting property from
graphs with communities is that the distance between nodes of the same groups are
generally shorter than to other group nodes. The intuition is that a walk between nodes
of the same community has much more available paths making easier to reach, while
intercluster walks would have to first reach a node which is connected to the other group
and then make its way to the desired node.

Figure 4.4: Distance matrix.

We can visually confirm the hypothesis in the Figure 4.4 where the distance matrix,
D ∈ Rnxn, of the graph from Figure 4.3 is represented, which entries are defined as

dij := distance between node i and j
We could utilize this information in order to construct a new similarity matrix S

defined as
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S =
{
sij = 1 if wi,j = 1
sij = −dij if wi,j = 0 (4.9)

Plugging such matrix into (4.6) would encourage to cluster together nodes that are
connected and discourage the ones that are far away. As we already explained none of
this new augmented adjacency matrix would break the group balancing when sampling
with the randomized rounding, as we would just reject those ones.
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CHAPTER 5
Experimental results

In order to test the performance and robustness of the Semidefinite formulation
we will run the algorithms on both synthetic and real networks. Furthermore, we will
compare with some of the methods mentioned in the state of the art chapter and we will
combine the SDP formulation with different augmented adjacency matrices. This mean
that we will solve the balanced-cut-SDP (4.6) substituting the matrix in the objective by:

• SDP-commu: normalized communicability matrix C = exp(W/max(eig(W )))
• SDP-distance: the similarity matrix based in the distance from (4.9)
• SDP-distance-W2 : a combination of the similarity matrix (4.9) based on the

distance and the walks of length 2 B = S +W 2/max(W 2)

5.1 Synthetic Generated Datasets
Access to ground truth labels is one of the advantages of using computer-generated

networks. Many available real datasets also count with annotations. However, with
synthetics model, we can control the difficulty of the community recovery. Concretely, the
SBM shows a sharp phase transition where the problem becomes unsolvable. Bandeira
et al. [1] calculated, both theoretically and computationally, such limit for the special
case of k = 2 and p1 = p2 where p1 and p2 denotes the internal linking probability of the
first and second community respectively. If we recall, the SBM is parametrized by the
number of nodes n, the affinity matrix ρ and the group assignment distribution γ. For
our generated model we will choose

n = 100 γ = [0.5, 0.5] ρ =
[
p q
q p

]
and using Bandeira’s results we will define three different scenarios in ascendant difficulty

• Easy scenario, "easy-SBM ": p = 0.15 and q = 0.05
• Challenging scenario, "diff-SBM ": p = 0.13 and q = 0.05
• Extreme scenario, "extr-SBM ": p = 0.11 and q = 0.05

Notice that we do not have to decrease too much probability p, the only parameter
that changes, in order to complicate the problem considerably. This is due to the
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aforementioned sharp threshold of the SBM. In order to be able to generalize about the
results we assemble, with the specified parameters, twenty different networks for each
scenario. In the Figure 5.1 one can observe an assemble for each case. Nodes from 0 to
50 correspond to the first community and the rest to the second community. It can be
appreciated how the group linkage loose density.

Figure 5.1: Adjacency matrices of the three defined scenarios for the SBM.

We use the same parameter setting for defining different scenarios of the DC-SBM.
Additionally, the individual node scaling θ is defined generated as θu ∼ 3× Poisson(0.1)
which will enhance the degree of only a few nodes by a factor of 3. Again, one of the
twenty assemble for each case can be visualized in the Figure 5.2.

• Easy scenario, "easy-DCSBM ": p = 0.02 and q = 0.0035
• Challenging scenario, "diff-DCSBM ": p = 0.02 and q = 0.07
• Extreme scenario, "extr-DCSBM ": p = 0.02 and q = 0.085

One can observe, in the results of Table 5.1 how the SDP formulation obtains much
better results than the rest of the algorithms. In particular, the hierarchical methods,
completely fail to recover any community even for the less challenging scenario. The
spectral method is still able to produce decent results, but still inferior to the SDP
methods. Nonetheless, these are very impressive results considering the computational
speed of Spectral Clustering. Ultimately, one can verify how the augmented adjacency
matrices enhance the accuracy of the general balanced-cut-SDP.

5.2 Real Datasets
In 1970 the anthropologist and computer scientist, Wayne W. Zachary, studied for

3 years the social dynamics of a local Karate club. Wayne created a network based on
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Figure 5.2: Adjacency matrices of the three defined scenarios for the DC-SBM.

SBM DC-SBM
easy diff extr easy diff extr

Louvain 0.51 0.51 0.512 0.51 0.51 0.51
Girvan-Newman 0.529 0.51 0.51 0.6645 0.519 0.51
Spectral-clustering 0.926 0.82 0.6735 0.794 0.6275 0.522
SDP 0.9595 0.836 0.693 0.9145 0.7165 0.539
SDP-comm 0.96 0.8355 0.7095 0.913 0.736 0.54
SDP-distance 0.948 0.839 0.71 0.91 0.715 0.5575
SDP-distance-W2 0.9465 0.846 0.703 0.916 0.7095 0.5645

Table 5.1: Average accuracy of 20 trials per scenario.

the pairwise social interactions of the 34 members outside of the club. After a while,
a conflict between the club administrator and the instructor arose and the club split.
Wayne was able to predict to who each of the members supported, except one [47].

For some reason, after Newman used this dataset in his seminal paper from 2004 [34]
it became very popular and it has been used extensively by the researchers in community
detection. In fact, the dataset became so popular that network scientist created the
Zachary’s Karate club trophy for the researchers who used the dataset as an example at
conferences on networks. The club network is shown in the Figure 5.3.

The second analyzed dataset consist of a dolphin community living in Doubtful
Sound, New Zealand. The ecology researchers created a network of 62 dolphins based in
the number of times that they were sighted together. The network can be visualized in 5.4.

Access to the underlying model or process that generated these networks is impossible.
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Instead of ground truth data, we have to rely on metrics that, for our understanding,
measure the goodness of the partitions. One will be the modularity as defined in 3.4.
Another metric will be the silhouette index. For each node, i, clustered in the community
the Ck, the silhouette is defined as

s(i) = b̄min − b̄i,Ck

max(b̄min, b̄i,Ck
)

where b̄i,Ck
is the average distance between node i and all the nodes of its community Ck

and b̄min is the b̄i,Cj
for every other community j. The metric is bounded as −1 ≤ s(i) ≤ 1

where 1 means well-clustered. The silhouette index of a community is the average over
its nodes and the silhouette of the whole network is the average over all the communities.

Figure 5.3: Karate-club network. Figure 5.4: The dolphins network.

Karate-Club Dolphins network
Q S Q S

Louvain 0.359 0.345 -0.001 -0.167
Girvan-Newman 0.359 0.345 0.378 0.446
Spectral-clustering 0.151 0.190 0.337 0.321
SDP 0.371 0.328 0.401 0.307
SDP-comm 0.371 0.328 0.401 0.307
SDP-distance 0.371 0.328 0.401 0.307
SDP-distance-W2 0.371 0.328 0.401 0.307

Table 5.2: Modularity and Silhouette for the Karate and Dolphin networks.

The results (Table 5.2) show how the SDP formulations achieve the best modularity
score in both networks. This makes sense as the objective optimized is somehow related
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to the modularity. Both functions favor communities with high internal linkage. How-
ever, although the SDP methods achieve high Silhouette scores, the Girvan-Newman
algorithm is better in the two cases. The gap difference is especially very acute in
the Dolphin network. If we look at its topology these results make sense as a bottle-
neck effect is produced in the middle making the betweenness based method very suitable.

These results underly the importance of how we define a community and its corre-
spondence goodness functions. I believe that a community is better represented by the
modularity the SDP is the best choice. If contrary we rely on the silhouette, the GN
method is the best in this case.
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CHAPTER 6
Conclusions

In the present thesis, we have achieved the following goals:

• Shown the connections between graph theory and linear algebra

• We have made a thorough analysis of the state of the art on community detection
summarizing the most popular method and showing connections across them.

• We have explained the powerful method of relaxing optimization problems and
how they can approximate the real problems. Specifically, we have shown how
semidefinite programming is a very suitable method for the community detection
problem.

• We have shown how already existing SDP formulations for the community detection
problem can be reformulated in order to control the groups’ size.

• We purposed several modified adjacency matrices, as input for the SDP formulations,
which enhance separability of the problem.

• Finally, from the experimental results, we showed the importance of how different
goodness metrics lead to different partitions.

As future work, we have opened a window for enhancing the SDP formulations by
augmented adjacency matrices. We have just proposed two different types, but many
other options and combinations are available to explore. Additionally, the formulation
can be extended to admit more than one cut and exploiting sparsity is definitely possible
in many cases.
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